27 de enero de 2013

Funciones de la membrana plasmática 1

La membrana plasmática, tiene un doble papel fisiológico en la célula, por una parte aísla y por lo tanto diferencia el medio interno celular del ambiente exterior pero a su vez media la interacción entre la célula y su entorno exterior al permitir intercambio selectivo de materia y energía e información (diferentes tipos de señales físicas y químicas) entre ambos, intercambio que es necesario para mantener una adecuada homeostasis del medio interno, clave en el mantenimiento de la vida celular. Esta doble función de la membrana plasmática es posible por una parte gracias a la naturaleza aislante que en medio acuoso proporciona la bicapa lipídica hidrofóbica y por otra en las funciones de transporte que desempeñan las proteínas embebidas en la membrana. Es la actividad específica transportadora de dichas proteínas la que determina permeabilidad selectiva de las biomembranas y de ese modo desempeñan un papel crucial en la función de la membrana.



La membrana plasmática es una barrera selectivamente permeable que permite el paso de unas sustancias pero no de otras. Determina pues que sustancias entran o salen de la célula. El interior hidrofóbico de la bicapa de fosfolípidos es una de las razones por las que la membrana es selectivamente permeable. Así, la bicapa lipídica tiene un papel fisicoquímico dual pues sirve por una parte como un solvente de las proteínas de la membrana y por otra actúa como una barrera a la permeabilidad. Mientras que las moléculas hidrofóbicas, que son solubles en lípidos (e.g etanol) pueden pasar fácilmente la membrana, moléculas pequeñas como el oxígeno (O2), dióxido de carbono (CO2), Nitrógeno (N2) pueden difundir entre los fosfolípidos de membrana, pero moléculas hidrofílicas pequeñas como agua, nutrientes como la glucosa e iónes [Na+, K+, protones (H+), etc…] no pueden pasar directamente a través de los fosfolípidos de la membrana plasmática. Estos compuestos deben pasar a través de proteínas de transporte específico situadas en la membrana.

Las proteínas embebidas en la membrana realizan varios tipos de funciones algunas de las cuales están relacionadas con el mantenimiento de la hemostasia celular (e.g. transporte, enzimas) y otras que son básicas para integrar una célula en un tejido (receptores, funciones de anclaje, de conexión y reconocimiento intercelular)

Transporte

Transporte específico de moléculas hacia el interior o hacia el exterior celular. Esta función de las proteínas de membrana es de vital importancia para la toma de nutriente por la célula, la salida de productos de desecho de la célula; así como para el mantenimiento de diferentes tipos de gradientes electroquímicos (e.g. potencial de membrana) y de concentración de diferentes moléculas a través de la membrana necesarios para mantener la vida celular.

Diferentes tipos de movimiento de las moléculas a través de las membranas biológicas. Difusión pasiva y la difusión facilitada no requieren el consumo de energía, ya que se realiza a favor de gradiente de concentración o electroquímico; cuando las sustancias están cargadas la dirección y magnitud del flujo de iones a través de una membrana depende tanto de la diferencia de concentración y de la diferencia eléctrica a través de ella, estas dos fuerzas son por ello colectivamente conocidas como gradiente electroquímico. Algunas sustancias entran directamente en la célula a través de difusión pasiva pero muchas sustancias de interés para la célula atraviesan la membrana mediante difusión facilitada. El transporte activo se realiza con consumo de energía (acoplando a la hidrólisis ATP) al realizarse en una dirección energéticamente desfavorable contra un gradiente electroquímico o de concentración.


Proteínas transportadoras de membrana


Se suelen distinguir dos clases de proteínas que intervienen en la difusión facilitada: Las proteínas canales o de canal facilitan la difusión formando poros (e.g porinas) abiertos en la membrana que permiten la libre difusión de cualquier molécula de tamaño y carga apropiados. Las proteínas transportadoras se unen específicamente en un lado de la membrana a las moléculas que van a ser transportadas, sufren entonces un cambio conformacional que permite que la molécula pase a través de la membrana y sea finalmente liberada al otro lado. Se distinguen tres tipos de transportadores, Uniportes, transportan un solo tipo de molécula a favor de gradiente de concentración y proteínas de cotransporte (Simportes y Antiportes), que median el movimiento de una molécula en contra de su gradiente de concentración dirigido por el cotransporte (en la misma dirección o en sentidos opuestos respectivamente) de otra molécula o ión a favor de gradiente. Existen también canales iónicos (que transportan iones, moléculas cargadas) cuya apertura es regulada por la unión de un pequeño ligando (e.g. un neurotransmisor, acetilcolina) o con una apertura regulada por cambios en el voltaje eléctrico (canales iónicos regulados por voltaje para cationes Na+, K+, Ca2+, etc…).

Por otra parte, las bombas potenciadas por ATP o bombas ATPasas como también se las denomina, que permiten a la célula el transporte activo de ciertas moléculas en contra de gradiente de concentración o electroquímico. Se han descrito diferentes tipos de bombas ATPasas que median el transporte activo dependiente de la hidrólisis de ATP. La familia de transportadores de tipo ABC (acrónimo de ATP-binding Cassete en inglés) es una de la más numerosa






Las células producen y mantienen diferentes tipos de gradientes electroquímicos, que son importantes para diferentes aspectos de la fisiología celular. Las bombas iónicas, son unas proteínas integrales de membrana responsables de mantener los diferentes gradientes iónicos a través de la membrana plasmática, siendo un buen ejemplo de transporte activo acoplado directamente a hidrólisis de ATP. Por ejemplo, la concentración de cationes Na+ es aproximadamente diez veces superior fuera que dentro de las células, mientras que concentración K+ de es mayor dentro que fuera. La bomba de Na+- K+ llamada también ATPasa de Na+- K+ es la responsable del mantenimiento de diferencias de concentración iónica (gradientes) Na+ y K+ a ambos lado de la membrana. La bomba de Na+- K+ utiliza la energía derivada de la hidrólisis de ATP para transportar Na+ y K+ contra sus gradientes electroquímicos. El proceso de transporte es el resultado de una serie de cambios conformacionales de la bomba, dirigidos por el ATP. Por cada tres iones Na+ transportados al exterior por la bomba se transportan dos iónes K+ al interior celular. Este bombeo desigual de iones positivos hace más negativo el interior celular lo que causa una separación de cargas a través de la membrana plasmática contribuyendo a originar el potencial de membrana (con un voltaje eléctrico negativo en la célula) que proporciona una fuerza eléctrica que influencia el movimiento de iones a través de la membrana. El potencial de membrana y gradiente electroquímico de Na+ y K+ mantenido por la ATPasa de Na+ y K+ tiene un papel crítico en la propagación de señales eléctrica en los nervios y músculos, así como en el mantenimiento de un equilibrio osmótico y volumen celular adecuado. Además la energía potencial almacenada en el gradiente de Na+ establecido por la ATPasa de Na+- K+ también se utiliza para el transporte activo de otras moléculas en contra de su gradiente de concentración, (e.g.glucosa), un proceso llamado cotransporte o transporte activo secundario.

A modo de ejemplo, la célula emplea diferentes tipos de transporte (facilitado y activo) y de transportadores: bombas ATPasa de calcio, canales iónicos, cotransportadores (antiporter) para controlar la concentración del ión Ca2+ entre diferentes compartimentos interiores de la célula y el exterior celular.

Enzimas que catalizan reacciones químicas asociadas a la membrana plasmática La ATPasa de Na+- K+ es un ejemplo de proteínas que además de tener una función transportadora son también una enzima (hidroliza ATP). Multitud de proteínas asociadas y embebidas en las membrana plasmática tiene actividad enzimática.

Señalización molecular

Ciertas proteínas integrales de membrana sirven también como receptores para recibir y transducir señales químicas o físicas del ambiente externo al interior celular. Permiten por ello la comunicación de la célula con su entorno exterior.

Proteínas receptores de membrana sirven para sentir estímulos externos (generalmente una pequeña moléculas señalizadora, e.g. hormona o un estímulo físico, luz por ejemplo) y poner en marcha una cascada de señalización interna que conduce a la generación finalmente una respuesta fisiológica adecuada. En muchos casos los receptores tienen también actividad enzimática.








































Por ejemplo, el receptor de insulina, una hormona péptidica que controla los niveles de glucosa en sangre es una proteína integral de membrana que tiene también actividad enzimática (quinasa).




























Unión intercelular. Las proteínas de membranas adyacentes pueden actuar como puentes de unión entre células. Permiten la comunicación intercelular. Las uniones comunicantes (gap junctions en inglés) un ejemplo de estructuras para la comunicación intercelular construidas con proteínas integrales de membrana llamadas conexinas.


Reconocimiento célula-célula

Los oligosacáridos que se encuentra unidos covalentemente a glicoproteínas y glicolípidos de la membrana plasmática se dirigen hacia el espacio extracelular formando el glicocalix, una especie de manto de carbohidratos que recubre la superficie celular. El glicocalix sirve para proteger la superficie celular de diferentes tipos de agresiones mecánica y químicas, además de estar implicado en diferentes tipos de interacción célula-célula al servir como puntos de reconocimiento (marcadores) de la superficie celular que son identificados por receptores específicos encontrados en otras células (reconocimiento intercelular). Por ejemplo los grupos sanguíneos humanos A, B, AB y O reflejan variaciones en la estructura de los oligosacáridos unidos a proteínas o lípidos en la superficie de los eritrocitos o glóbulos rojos.






























Los distintos grupos sanguíneos humanos son una consecuencia de la diferente estructura de los oligosacarídos unidos covalentemente a lípidos y proteínas de la membrana de los eritrocitos o glóbulos rojos. Los glóbulos blancos (leucocitos,e.g neutrófilos, macrófagos) son capaces de adherirse a las células endoteliales gracias a los restos de oligosacarios que expone en su superficie y que son reconocidos por receptores específicos (selectinas) de la superficie de las células endoteliales.

Proteínas receptoras, forman enlaces estructurales entre las proteínas del citoesqueleto celular y la matriz extracelular. De importancia fundamental en la construcción de tejidos y en el movimiento celular.




































Por ejemplo, en las estructura celulares de adhesión denominadas contacto focales, las células se adhieren a un sustrato(e.g. matriz extracelular), las proteínas integrales de membranaintegrinas, (un heterodimero de alfa y beta subunidades) constituyen el principal receptor para la interacción entre proteínas del citoesqueleto (en el citoplasma de la célula) y las proteínas de la matriz extracelular.


No hay comentarios:

Publicar un comentario