26 de octubre de 2012

Algunas curiosidades poliédricas II


¿Alguna vez te has parado a pensar por qué sólo existen 5 cuerpos platónicos? ¿Te has fijado que para construirlos únicamente se usan triángulos, cuadrados y pentágonos? ¿Por qué será esto? Sigue leyendo y descubrirás las respuestas...

Cómo seguramente ya habrás adivinado... ¡Está relacionado con los ángulos!

Lo primero que vamos a hacer, es comprobar con cuántos triángulos podemos formar un vértice de poliedro.
(Nota: Recuerda que en cada vértice tienen que unirse tres o más caras.)
Si dibujamos tres triángulos la suma de sus ángulos es de 180º y podemos formar el vértice de un tetraedro.
Si dibujamos cuatro triángulos la suma de sus ángulos es de 240º y podemos formar el vértice de un octaedro.
Si dibujamos cinco triángulos la suma de sus ángulos es de 300º y podemos formar el vértice de un icosaedro.
Si dibujamos seis triángulos la suma de sus ángulos es de 360º y no podemos formar el vértice de ningún poliedro porque nos queda una figura plana.



Ahora vamos a hacer lo mismo con el cuadrado.

Si dibujamos tres cuadrado la suma de sus ángulos es de 270º y podemos formar el vértice de un cubo.
Si dibujamos cuatro cuadrados la suma de sus ángulos es de 360º y no podemos formar el vértice de ningún poliedro porque nos queda una figura plana.


Lo repetimos con el pentágono:

Si dibujamos tres pentágonos la suma de sus ángulos es de 324º y podemos formar el vértice de un dodecaedro.

Y no podemos dibujar cuatro pentágonos porque la suma de los ángulos es superior a 360º.

Y por último, vamos a ver que no podemos formar un vértice de poliedro con hexágonos o polígonos de mayor número de lados:

Si dibujamos tres hexágonos la suma de sus ángulos es de 360º y no podemos formar el vértice de ningún poliedro porque nos queda una figura plana.
Si tenemos polígonos de más de 6 lados únicamente podremos dibujar 2 polígonos, por lo que no pueden formar vértice.

No hay comentarios:

Publicar un comentario